[en] AUTOMATIC SYNTHESIS OF DIGITAL MICROCONTROLLER PROGRAMS BY GENETIC PROGRAMMING

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: DOUGLAS MOTA DIAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6666&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6666&idi=2
http://doi.org/10.17771/PUCRio.acad.6666
Resumo: [pt] Esta dissertação investiga o uso de programação genética linear na síntese automática de programas em linguagem de montagem para microcontroladores, que implementem estratégias de controle de tempo ótimo ou sub-ótimo, do sistema a ser controlado, a partir da modelagem matemática por equações dinâmicas. Uma das dificuldades encontradas no projeto convencional de um sistema de controle ótimo é que soluções para este tipo de problema normalmente implicam em uma função altamente não-linear das variáveis de estado do sistema. Como resultado, várias vezes não é possível encontrar uma solução matemática exata. Já na implementação, surge a dificuldade de se ter que programar manualmente o microcontrolador para executar o controle desejado. O objetivo deste trabalho foi, portanto, contornar tais dificuldades através de uma metodologia que, a partir da modelagem matemática de uma planta, fornece como resultado um programa em linguagem de montagem. O trabalho consistiu no estudo sobre os possíveis tipos de representações para a manipulação genética de programas em linguagem de montagem, tendo sido concluído que a linear é a mais adequada, e na implementação de uma ferramenta para realizar os três estudos de caso: water bath, cart centering e pêndulo invertido. O desempenho de controle dos programas sintetizados foi comparado com o dos sistemas obtidos por outros métodos (redes neurais, lógica fuzzy, sistemas neurofuzzy e programação genética). Os programas sintetizados demonstraram, no mínimo, o mesmo desempenho, mas com a vantagem adicional de fornecerem a solução já no formato final da plataforma de implementação escolhida: um microcontrolador.