[en] ALGORITHMS FOR ASSISTED DIAGNOSIS OF SOLITARY LUNG NODULES IN COMPUTERIZED TOMOGRAPHY IMAGES

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: ARISTOFANES CORREA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4516&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4516&idi=2
http://doi.org/10.17771/PUCRio.acad.4516
Resumo: [pt] O presente trabalho visa desenvolver uma ferramenta computacional para sugerir sobre a malignidade ou benignidade de Nódulos Pulmonares Solitários, através da análise de medidas de textura e geometria obtidas a partir das imagens de tomografia computadorizada. São propostos quatro grupos de métodos com o objetivo de sugerir o diagnóstico para o nódulo. Os grupos de métodos são divididos de acordo com suas características comuns. O Grupo I trata dos métodos baseados em textura adaptados para 3D, como o histograma, o Método de Dependência Espacial de Níveis de Cinza, o Método de Diferença de Níveis de Cinza e o Método de Comprimento de Primitivas de Níveis de Cinza. O Grupo II também trata da textura dos nódulos, mas utiliza quatro funções geoestatísticas denominadas semivariograma, semimadograma, covariograma e correlograma. O Grupo III descreve apenas medidas baseadas na geometria do nódulo, como a convexidade, a esfericidade e medidas baseadas na curvatura. Por fim, o Grupo IV analisa os métodos do coeficiente de Gini e do esqueleto dos nódulos, que levam em consideração tanto a geometria quanto a textura do nódulo. Foi analisada uma amostra com 36 nódulos, sendo 29 benignos e 7 malignos, e os resultados preliminares são promissores na caracterização dos nódulos pulmonares. A maioria dos grupos de métodos propostos tem o valor da área sobre a curva ROC acima de 0.800, utilizando a Análise Discriminante Linear de Fisher e a Rede Neural Perceptron de Múltiplas Camadas. Isto significa que os métodos propostos possuem grande potencial na discriminação e classificação dos Nódulos Pulmonares Solitários.