[en] A COMPARISON OF CASCADE MULTITEMPORAL IMAGE CLASSIFICATION METHODS

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: LIGIA MARCELA TARAZONA ALVARADO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37871&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37871&idi=2
http://doi.org/10.17771/PUCRio.acad.37871
Resumo: [pt] Esta dissertação faz uma comparação de três métodos de classificação em cascata de imagens multitemporais. Os classificadores se baseiam nas seguintes técnicas: (1) Máquina de Suporte Vetorial (SVM), (2) Modelos Ocultos de Markov (HMM) e (3) Cadeias de Markov Nebulosas(FMC). Para verificar a robustez dos modelos de classificação, introduziram-se nos dados de entrada outliers, avaliando-se assim, a robustez dos classificadores. Adicionalmente, avaliou-se o desempenho dos métodos quando a proporção de ocorrências de cada transição de classe no conjunto de treinamento difere da proporção no conjunto de teste. Determinou-se também qual o benefício do uso de conhecimento a priori sobre as transições possíveis. A análise experimental foi realizada sobre dois conjuntos de imagens de diferentes características, um par de imagens IKONOS do Rio de Janeiro, Brasil e um par de imagens LANDSAT7 de Alcinópolis, Mato Grosso do Sul. O estudo revelou que acurácia global das três abordagens tem um comportamento similar nos diferentes experimentos. Mostrou também que todas as três abordagens multitemporais apresentam desempenho superior aos seus homólogos monotemporais.