[pt] O PROBLEMA DE STEINER NA MÉTRICA RETILÍNEA: PROPRIEDADES, NOVAS HEURÍSTICAS E ESTUDO COMPUTACIONAL
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10236&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10236&idi=2 http://doi.org/10.17771/PUCRio.acad.10236 |
Resumo: | [pt] Nesta tese faz-se uma extensa revisão bibliográfica sobre o problema de Steiner na métrica retilínea, destacando-se a aplicação do mesmo no projeto de VLSI. São descritas em detalhes várias heurísticas existentes na literatura para as quais estudam-se a complexidade computacional e a qualidade das soluções obtidas. Além disso, são estabelecidos novos resultados relativos ao comportamento de pior caso destas heurísticas. Propõe-se, ainda, duas novas heurísticas para o problema de Steiner na métrica retilínea para as quais são estudadas a complexidade computacional e a qualidade da solução, inclusive com a análise do pior caso. Uma grande quantidade de testes computacionais permitiu a realização de uma comparação do desempenho das diversas heurísticas implementadas, concluindo-se que uma das novas heurísticas propostas fornece, em média, soluções melhores do que aquelas fornecidas pelas demais heurísticas conhecidas na literatura. |