[pt] ASSISTENTE VIRTUAL UTILIZANDO TRANSFORMERS GENERATIVOS PRÉ-TREINADOS NO CONTEXTO DE GERENCIAMENTO DE RESERVATÓRIOS
Ano de defesa: | 2025 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69663&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69663&idi=2 http://doi.org/10.17771/PUCRio.acad.69663 |
Resumo: | [pt] Com a crescente popularização das técnicas de Inteligência Artificial, principalmente voltadas ao processamento de linguagem natural, testemunhamos um notável avanço nos Large Language Models (modelos de linguagem avançados), dos quais o Generative Pre-trained Transformer (GPT) consiste no exemplo mais notável. Consequentemente, assistentes virtuais têm conquistado zuma presença significativa em diversas áreas da vida contemporânea. Neste trabalho, é proposta uma metodologia para desenvolver uma assistente virtual inteligente, baseada em um modelo gerador, capaz de compreender a língua portuguesa do Brasil, bem como o domínio específico da Indústria de Óleo e Gás. Essa assistente tem a capacidade de interpretar comandos textuais fornecidos pelos usuários e executar ações correspondentes em um sistema corporativo. Essa metodologia é o resultado de uma cuidadosa análise de diferentes modelos generativos disponíveis, buscando identificar aquele que melhor se adequa aos requisitos da assistente virtual inteligente em português. Para treinamento é criado um dataset representativo com os conceitos necessários e específicos do sistema e da indústria do petróleo. É adotado um processo de refinamento que permite identificar eventuais falhas e aperfeiçoar a compreensão da assistente para garantir respostas precisas e direcionadas. Também são abordados neste trabalho os desafios e limitações inerentes aos modelos generativos, bem como estratégias para superá-las a fim de obter gerações mais precisas e seguras. |