[fr] AUTOUR DE LA THÈSE DE CHURCH ET DE L INTUITIONNISME LOGIQUE
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46898&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46898&idi=3 http://doi.org/10.17771/PUCRio.acad.46898 |
Resumo: | [pt] A tese de Church propõe que tanto a noção de computável quanto a de função recursiva (ou equivalentes: máquina de Turing, cálculo lambda) possuem a mesma extensão. Sua peculiaridade, de acordo com as interpretações mais consolidadas, deve-se ao fato de não poder ser matematicamente demonstrada, uma vez que uma das noções envolvidas, a de computável, possui um caráter informal. Neste trabalho, consideraremos diversas críticas à tese de Church, prestando especial atenção às críticas de caráter intuicionista. Acreditamos ter obtido dois resultados, um que diz respeito diretamente à tese de Church, e outro que diz respeito à lógica intuicionista. Quanto ao primeiro, propomos, na contramão de um realismo ingênuo, que os conceitos matemáticos não são imutáveis e que, por essa razão, uma maneira mais adequada de compreender a tese de Church seria levando em consideração a gênese intencional do conceito de computável. Quanto ao segundo resultado, que diz respeito à associação que o intuicionismo faz entre demonstração e verdade, propõe-se uma maneira coerente de conciliar a condição contingente e temporal de posse de uma demonstração com o caráter necessário e atemporal do valor de verdade de proposições matemáticas. |