[en] MACHINE LEARNING METHODS APPLIED TO PREDICTIVE MODELS OF CHURN FOR LIFE INSURANCE
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35235&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35235&idi=2 http://doi.org/10.17771/PUCRio.acad.35235 |
Resumo: | [pt] O objetivo deste estudo foi explorar o problema de churn em seguros de vida, no sentido de prever se o cliente irá cancelar o produto nos próximos 6 meses. Atualmente, métodos de machine learning vêm se popularizando para este tipo de análise, tornando-se uma alternativa ao tradicional método de modelagem da probabilidade de cancelamento através da regressão logística. Em geral, um dos desafios encontrados neste tipo de modelagem é que a proporção de clientes que cancelam o serviço é relativamente pequena. Para isso, este estudo recorreu a técnicas de balanceamento para tratar a base naturalmente desbalanceada – técnicas de undersampling, oversampling e diferentes combinações destas duas foram utilizadas e comparadas entre si. As bases foram utilizadas para treinar modelos de Bagging, Random Forest e Boosting, e seus resultados foram comparados entre si e também aos resultados obtidos através do modelo de Regressão Logística. Observamos que a técnica SMOTE-modificado para balanceamento da base, aplicada ao modelo de Bagging, foi a combinação que apresentou melhores resultados dentre as combinações exploradas. |