[en] BOUNDING BOXES SELECTION IN OBJECT DETECTION ARCHITECTURES
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53479&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53479&idi=2 http://doi.org/10.17771/PUCRio.acad.53479 |
Resumo: | [pt] Esta dissertação estuda métodos e algoritmos para critérios de seleções dos retângulos envolventes focando em arquiteturas de detecção de objetos baseada redes neurais convolucionais para tempo real, que processam mais de 30fps, que também possibilitam a expansão para outras arquiteturas. O objetivo desta dissertação é melhorar as métricas Recall e Precision, proporcionando mais assertividade nos resultados destas arquiteturas sem a necessidade de recriá-las ou retreiná-las, diminuindo, assim, os recursos para manutenções. As arquiteturas que trabalham em tempo real normalmente não apresentam melhores resultados, pois são desenvolvidas visando a redução do tempo de execução. Para resolver estes problemas, serão testados outros métodos de critérios de seleção de retângulos envolventes em estado da arte, são eles: Nonmaximum Suppression (NMS), Soft-NMS, Non-Maximum Weighted (NMW) e Weighted Boxes Fusion (WBF). Os resultados obtidos foram comparados aos originais das arquiteturas, utilizando as métricas mAP, Recall e Precision. Através desta comparação foi possível comprovar que os novos critérios apresentaram bons resultados. O tempo de execução dos novos critérios também foi analisado com execuções de imagens em lotes, contornando alguns overheads dos critérios mais pesados. As arquiteturas utilizadas como base nos experimentos foram baseadas nos sistemas YOLOv3-Tiny e YOLOv4-Tiny, utilizando o dataset QMUL-OpenLogo público e especializado em logotipos e baseado em fotos reais. |