[pt] ALGORITMOS EXATOS PARA O PROBLEMA DE ROTEAMENTO DE VEÍCULOS CAPACITADO
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24379&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24379&idi=2 http://doi.org/10.17771/PUCRio.acad.24379 |
Resumo: | [pt] Os Problemas de Roteamento de Veículos estão entre os problemas combinatoriais mais difíceis de se resolver à otimalidade. Eles foram propostos no final da década de 1950, e desde então eles têm sido amplamente estudados. O interesse deve-se a sua importância prática, bem como da dificuldade de se fornecer algoritmos eficientes para resolvê-los. Esta tese trata principalmente da resolução exata do Problema de Roteamento de Veículos com Capacidades (PRVC). Neste problema, um conjunto de clientes, cada um associado a uma demanda, deve ser atendido por uma frota de veículos. Todos eles têm o mesma capacidade e, inicialmente, estão localizados no mesmo depósito. Uma solução é um conjunto de rotas que começam e terminam no depósito e visitam cada cliente uma única vez. A restrição em uma rota é que a soma das demandas de seus clientes não exceda a capacidade do veículo. O objetivo é encontrar uma solução com um custo mínimo. Os melhores algoritmos exatos para o PRVC desenvolvidos nos últimos dez anos são baseados na combinação de geração de cortes e colunas. Alguns autores utilizaram apenas cortes sobre as variáveis da formulação original, com a finalidade de manter o subproblema de geração de colunas relativamente fácil. Outros puderam reduzir os limites duais utilizando também um número restrito de cortes expressos nas variáveis do problema mestre, parando de incluir tais cortes quando o subproblema tornavase proibitivamente difícil. Uma família eficaz de tais cortes são os Subset Row Cuts. Esta tese apresenta uma técnica para reduzir consideravelmente o impacto que tais cortes causam no subproblema de geração de colunas, permitindo assim que muito mais cortes sejam adicionados. O novo algoritmo Branch-Cut-and-Price proposto também incorpora e combina pela primeira vez vários elementos presentes em trabalhos anteriores, como enumeração de rotas, fixação de variáveis e strong branching. Todas as instâncias usadas em algoritmos exatos, com até 199 clientes, foram resolvidas à otimalidade. Além disso, algumas maiores, com até 360 clientes, apenas consideradas antes em métodos heurísticos, também foram resolvidas. |