[pt] MODELO DE OTIMIZAÇÃO TEMPORAL DE MANUTENÇÃO EM UM PARQUE EÓLICO
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33532&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33532&idi=2 http://doi.org/10.17771/PUCRio.acad.33532 |
Resumo: | [pt] Os parques eólicos devem periodicamente desligar suas turbinas para realizar as manutenções agendadas. Uma vez que esta interrupção afeta a geração de energia e qualquer déficit na produção deve ser coberto por compras de energia no mercado spot, determinar o tempo ótimo para iniciar o trabalho de manutenção em um parque eólico é fundamental para maximizar sua receita, considerando que é função tanto da velocidade do vento esperada como dos preços spot da eletricidade. Neste trabalho, desenvolvemos um modelo para determinar o momento ideal para manutenção em um parque eólico. Analisamos uma janela de oportunidade no período mais provável do ano e realizamos atualizações semanais das velocidades esperadas do vento e previsões de preços de energia. As velocidades do vento são previstas com um modelo ARIMA enquanto os preços spot são simulados sob o modelo de programação estocástica dupla Newave. A decisão de adiar a manutenção para uma data futura é modelada como uma opção real americana. Testamos dois modelos com dados reais de um parque eólico no Nordeste brasileiro e comparamos nossos resultados com a prática atual e com o agendamento de manutenção considerando informações perfeitas para determinar os benefícios do modelo. Os resultados sugerem que esses modelos podem oferecer vantagens significativas em relação a uma decisão de parada que escolhe aleatoriamente uma semana para começar a manutenção dentro da janela de oportunidade e está perto da data de parada ideal, considerando o modelo de informação perfeita. |