[pt] DESENVOLVIMENTO DE UMA METODOLOGIA PARA CARACTERIZAÇÃO DE FASES NO PELLET FEED UTILIZANDO MICROSCOPIA DIGITAL E APRENDIZAGEM PROFUNDA
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64711&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64711&idi=2 http://doi.org/10.17771/PUCRio.acad.64711 |
Resumo: | [pt] O minério de ferro é encontrado na natureza como agregado de minerais, dentre os principais minerais presentes em sua composição estão: hematita, magnetita, goethita e quartzo. Dada a importância do minério de ferro para a indústria, há um crescente interesse por sua caracterização com o objetivo de avaliar a qualidade do material. Com o avanço de pesquisas na área de análise de imagens e microscopia, rotinas de caracterização foram desenvolvidas utilizando ferramentas de Microscopia Digital e Processamento e Análise Digital de Imagens capazes de automatizar grande parte do processo. Porém esbarrava-se em algumas dificuldades, como por exemplo identificar e classificar as diferentes texturas das partículas de hematita, as diferentes formas de seus cristais ou discriminar quartzo e resina em imagens de microscopia ótica de luz refletida. Desta forma, a partir da necessidade de se construir sistemas capazes de aprender e se adaptar a possíveis variações das imagens deste material, surgiu a possibilidade de estudar a utilização de ferramentas de Deep Learning para esta função. Este trabalho propõe o desenvolvimento de uma nova metodologia de caracterização mineral baseada em Deep Learning utilizando o algoritmo Mask R-CNN. Através do qual é possível realizar segmentação de instâncias, ou seja, desenvolver sistemas capazes de identificar, classificar e segmentar objetos nas imagens. Neste trabalho, foram desenvolvidos dois modelos: Modelo 1 que realiza segmentação de instâncias para as classes compacta, porosa, martita e goethita em imagens obtidas em Campo Claro e o Modelo 2 que utiliza imagens adquiridas em Luz Polarizada Circularmente para segmentar as classes monocristalina, policristalina e martita. Para o Modelo 1 foi obtido F1-score em torno de 80 por cento e para o Modelo 2 em torno de 90 por cento. A partir da segmentação das classes foi possível extrair atributos importantes de cada partícula, como distribuição de quantidade, medidas de forma, tamanho e fração de área. Os resultados obtidos foram muito promissores e indicam que a metodologia desenvolvida pode ser viável para tal caracterização. |