[pt] MODELOS PREDITIVOS PARA EVASÃO DE ALUNOS NO ENSINO SUPERIOR PRIVADO: UMA APLICAÇÃO DE MACHINE LEARNING PARA GESTÃO DE MARKETING DE RELACIONAMENTO

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: FRANCISCO COIMBRA CARNEIRO PEREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32553&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32553&idi=2
http://doi.org/10.17771/PUCRio.acad.32553
Resumo: [pt] Perdendo em média mais de 20 por cento da base de alunos todo semestre, a evasão de alunos no ensino superior privado representa um desafio para a gestão dessas instituições. Diferentes abordagens são utilizadas para combater este problema. Para a gestão de marketing de retenção, a identificação dos alunos é o primeiro passo necessário para aplicar uma estratégia de interação personalizada. Nesse sentido, este trabalho apresenta uma metodologia quantitativa para classificação de risco de evasão de alunos ativos. Baseado em dados históricos de alunos que evadiram ou se formaram, modelos gerados por algoritmos de machine learning foram calculados e comparados e, na sequência, utilizados para classificar alunos ativos. Por fim, estimou-se o lifetime value desses alunos para auxiliar na definição de estratégias de retenção.