[pt] AVALIANDO O USO DO ALGORITMO RANDOM FOREST PARA SIMULAÇÃO EM RESERVATÓRIOS MULTI-REGIÕES

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: IGOR CAETANO DINIZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62992&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62992&idi=2
http://doi.org/10.17771/PUCRio.acad.62992
Resumo: [pt] Simulação de reservatórios de óleo e gás é uma demanda comum em engenharia de petróleo e pesquisas relacionadas, que pode requerer um elevado custo computacional de tempo e processamento ao resolver um problema matemático. Além disso, alguns métodos de caracterização de reservatórios necessitam múltiplas iterações, resultando em muitas simulações para obter um resultado. Também podemos citar os métodos baseados em conjunto, tais como o ensemble Kalman filter, o EnKF, e o Ensemble Smoother With Multiple Data Assimilation,o ES-MDA, que requerem muitas simulações. Em contrapartida, o uso de aprendizado de máquina cresceu bastante na indústria de energia. Isto pode melhorar a acurácia de predição, otimizar estratégias e outros. Visando reduzir as complexidades de simulação de reservatórios, este trabalho investiga o uso de aprendizado de máquina como uma alternativa a simuladores convencionais. O modelo Random Forest Regressor é testado para reproduzir respostas de pressão em um reservatório multi-região radial composto. Uma solução analítica é utilizada para gerar o conjunto de treino e teste para o modelo. A partir de experimentação e análise, este trabalho tem o objetivo de suplementar a utilização de aprendizado de máquina na indústria de energia.