[pt] BUSCA DE CONHECIMENTOS EM BASES DE DADOS

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: CYBELE LUZANA REIS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11103&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11103&idi=2
http://doi.org/10.17771/PUCRio.acad.11103
Resumo: [pt] Esta dissertação investiga a aplicação de Redes Neurais e Algoritmos Genéticos como ferramentas para retirar conhecimentos, em forma de regras, de um Banco de Dados. Essa nova área, KDD (knowledge Discovery in Database), surgiu com a necessidade de se desenvolver ferramentas que possam, de forma automática e inteligente, ajudar aos analistas de dados a transformar grandes volumes de dados em informações e organizar estas informações em conhecimentos úteis. A pesquisa aqui resumida é portanto, um desenvolvimento na área de sistemas de computação (desenvolvimento de sistemas) e na área de inteligência computacional (data mining, algoritmos genéticos, redes neurais, interfaces inteligentes, sistemas de apoio a decisão, criação de bases de conhecimentos) O trabalho de tese foi dividido em cinco partes principais: um estudo sobre o processo KDD; um estudo da estrutura dos sistemas de KDD encontrados na literatura; o desenvolvimento de sistemas de KDD, um utilizando algoritmos Genéticos e os outros utilizando Redes Neurais; o estudo de casos e a análise de desempenho dos sistemas desenvolvidos. O processo de KDD serve para que se possa retirar novos conhecimentos (padrões, tendências, fatos, probabilidade, associações) de um determinado banco de dados. Basicamente o KDD consiste em oito etapas, que são: Definição do problema, Seleção dos dados, Limpeza dos dados, enriquecimento dos dados, Pré-processamento dos dados, Codificação dos dados, Mineração dos dados (data mining) e o relatório contendo a interpretação dos resultados. A mineração dos dados é freqüentemente vista como elemento chave do processo de KDD. A extração do conhecimento, propriamente dita, se dá na Mineração dos dados, onde toda técnica que ajude a extrair mais informações dos dados é útil. Assim na Mineração de dados podemos lançar mão de um grupo heterogêneo de técnicas, como por exemplo, Técnicas de estatísticas, visualização dos dados, redes neurais e algoritmos genéticos. Portanto os estudos do processo inclui estudos sobre Data Mining, aprendizado de máquinas, data warehouse, o processo e o ambiente do KDD, aspectos formais dos algoritmos de aprendizado, inteligência artificial, e algumas aplicações na vida real. Dentre os vários sistemas de KDD encontrados na literatura que foram estudados e analisados, podemos citar sistemas que utilizaram, na etapa de mineração dos dados, uma ou mais das seguintes técnicas de computação para extrair padrões e associações nos dados, uma ou mais das seguintes técnicas de computação para extrair padrões e associações nos dados tais como: Visualização dos dados, ferramenta de consulta, técnicas de estatísticas, processamento analítico on-line (OLAP), Árvore de decisão, regras de associação, redes neurais e algoritmos genéticos. Neste trabalho foram desenvolvidos dois sistemas de KDD. Em cada um dos modelos desenvolvidos utilizou-se uma técnica de visualização dos dados para garantir a interação do sistema com o analista dos dados. Além disso utilizou-se, na etapa mineração dos dados, num dos modelos Algoritmos genéticos, e no outro Redes Neurais Backpropagation. Também para efeito de comparação e de apoio, se desenvolveu um sistema utilizando Técnicas de Estatísticas. Com o modelo utilizando Algoritmos Genéticos se encontra a melhor regra de produção relacionada a um banco de dados, que responde a uma pergunta específica. E com os modelos utilizando Redes Neurais se obtém resultados para serem comparados. A fase de aplicação consistiu em analisar dois diferentes bancos de dados, um contendo dados dos meninos e meninas de rua, e o outro contendo dados dos alunos que se matricularam no vestibular. Na análise dos bancos de dados se utilizou os sistemas de KDD aqui desenvolvidos, tendo como objetivo encontrar, com o auxílio de Algoritmos genéticos, ou de redes neurais, a melhor regra de produção, relacionada aos bancos de dados, que responda uma pergunta específica. Dois tipo