[en] AUTOMATIC GENERATION OF BENCHMARKS FOR EVALUATING KEYWORD AND NATURAL LANGUAGE INTERFACES TO RDF DATASETS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: ANGELO BATISTA NEVES JUNIOR
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61091&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61091&idi=2
http://doi.org/10.17771/PUCRio.acad.61091
Resumo: [pt] Os sistemas de busca textual fornecem aos usuários uma alternativa amigável para acessar datasets RDF (Resource Description Framework). A avaliação de desempenho de tais sistemas requer benchmarks adequados, consistindo de datasets RDF, consultas e respectivas respostas esperadas. No entanto, os benchmarks disponíveis geralmente possuem poucas consultas e respostas incompletas, principalmente porque são construídos manualmente com a ajuda de especialistas. A contribuição central desta tese é um método para construir benchmarks automaticamente, com um maior número de consultas e com respostas mais completas. O método proposto aplica-se tanto a consultas baseadas em palavras-chave quanto em linguagem natural e possui duas partes: geração de consultas e geração de respostas. A geração de consultas seleciona um conjunto de entidades relevantes, chamadas de indutores, e, para cada uma, heurísticas orientam o processo de extração de consultas relacionadas. A geração de respostas recebe as consultas produzidas no passo anterior e computa geradores de solução (SG), subgrafos do dataset original contendo diferentes respostas às consultas. Heurísticas também orientam a construção dos SGs evitando o desperdiço de recursos computacionais na geração de respostas irrelevantes.