[pt] INSTABILIDADE PARAMÉTRICA DE COLUNAS

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: SALETE SOUZA DE OLIVEIRA BUFFONI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=2
http://doi.org/10.17771/PUCRio.acad.2132
Resumo: [pt] O presente trabalho tem por objetivo desenvolver uma formulação e certas estratégias que permitam a análise da perda de estabilidade de colunas esbeltas submetidas a carregamento axial periódico, fenômeno este conhecido como ressonância paramétrica. Uma excitação é dita paramétrica quando aparece nas equações de movimento do sistema na forma de coeficientes variáveis com o tempo - geralmente periódicos - e não como uma não homogeneidade. A coluna é descrita pela formulação clássica de Navier. O presente trabalho trata a coluna considerando-se um e três graus de liberdade com ou sem não-linearidades. As equações de movimento são obtidas utilizando-se o princípio de Hamilton através do método de Ritz. A equação linear (equação de Mathieu) e a equação de Duffing com pequeno amortecimento, são resolvidas de forma aproximada pelo método das múltiplas escalas, revelando a possibilidade de instabilização da posição de equilíbrio em diversas regiões do espaço definido pelos parâmetros de controle. A mesma conclusão é mostrada utilizando-se procedimentos computacionais para a resolução dos sistemas de equações lineares e nãolineares, com ou sem imperfeição geométrica inicial, podendo-se obter assim, a resposta do sistema, planos fase, seções de Poincaré e diagramas de bifurcação. Mostra-se a partir dos resultados numéricos, que a coluna submetida a cargas axiais harmônicas, pode tanto apresentar soluções com o mesmo período da força excitadora, quanto oscilações subarmônicas e superarmônicas de diversas ordens, além de movimentos caóticos.