[en] MATHEMATICAL PROGRAMMING MODELS AND LOCAL SEARCH ALGORITHMS FOR THE OFFSHORE RIG SCHEDULING PROBLEM

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: IURI MARTINS SANTOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35723&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35723&idi=2
http://doi.org/10.17771/PUCRio.acad.35723
Resumo: [pt] A exploração e produção (EeP) offshore de óleo e gás envolve várias operações complexas e importantes, como perfuração, avaliação, completação e manutenção de poços. A maioria dessas tarefas requer o uso de sondas, um recurso custoso e escasso que as companhias de petróleo precisam planejar e programar corretamente. Na literatura, este problema é chamado de Programação de Sondas. Todavia, existem poucos estudos relacionados aos poços marítimos e às atividades de perfuração e nenhum destes com funções objetivo e restrições realistas, como orçamento. Por isso, muitas empresas de petróleo têm fortes dificuldades no planejamento das sondas, resultando em grandes custos para elas. Com o objetivo de preencher essa lacuna, esta dissertação estuda um problema de programação de sondas em uma empresa petroleira e propõe um método híbrido para determinar a frota de sondas e seu cronograma, que minimize o orçamento da empresa. Dois modelos de programação matemática – um para minimização das sondas e outro para minimizar seu orçamento com variações da unidade de tempo utilizada (dia ou semana) – e várias heurísticas – usando algoritmos de busca local e variable neighborhood descent (VND) com três estruturas de vizinhança e duas estratégias de busca (first e best improvemment) e métodos construtivos- foram desenvolvidos e testados em duas instâncias (uma pequena e uma grande), baseadas em dados reais da empresa do caso de estudo. As três estruturas de vizinhanças são baseadas em movimentos de insert, uma delas não permite alterar as datas de alocação das tarefas na solução inicial, outra permite adiar tarefas e a última as posterga.Os resultados indicaram a dificuldade no desempenho dos modelos matemáticos nas grandes instâncias e uma forte capacidade das heurísticas para encontrar soluções similares com muito menos esforço computacional. Na instância pequena, o modelo exato para minimizar o orçamento encontrou soluções um pouco melhores que a heurística (diferença de entre 0,4 por cento e 5,6 por cento), embora necessitando de mais esforço computacional, principalmente os modelos com unidades de tempo em dias. Porém, na instância maior, as soluções da programação matemática possuíram altos gap (mais de 11 por cento) e altos tempos computacionais (pelo menos 12 horas), tendo o modelo matemático mais completo sido incapaz de encontrar soluções inteiras viáveis ou limites inferiores depois de mais de um dia rodando. Enquanto isso, as heurísticas foram capazes de encontrar soluções similares ou até melhores (desvios de -6 por cento e 14 por cento em relação a melhor solução exata) em um tempo muito menor, tendo 70 das 156 heurísticas desenvolvidas superado os modelos matemáticos. Além disso, os melhores resultados heurísticos foram utilizando algoritmos de variable neighborhood descent (VND) com estruturas de vizinhanças que realizavam movimentos de insert de tarefas em sondas existentes ou novas e permitiam postergar ou adiantar as tarefas das sondas. A abordagem hibrida foi comparada também com uma abordagem puramente heurística, tendo a primeira obtido melhores resultados. Por fim, os resultados demonstram que o método híbrido proposto combinando o modelo matemático que minimiza o número de sondas com as heurísticas de busca local é uma ferramenta de suporte a decisão rápida e prática, com potencial para reduzir milhões de dólares para as empresas petroleiras do mercado offshore, com capacidade para encontrar cronogramas próximos da solução ótima com pouco esforço computacional, mesmo em instâncias grandes onde a maioria dos métodos exatos é muito complexa e lenta.