[pt] AJUSTE DE HISTÓRICO EM MODELOS DE SIMULAÇÃO DE RESERVATÓRIOS POR ALGORITMOS GENÉTICOS E GEOESTATÍSTICA DE MÚLTIPLOS PONTOS

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: EUGENIO DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19629&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19629&idi=2
http://doi.org/10.17771/PUCRio.acad.19629
Resumo: [pt] Na área de Exploração e Produção (EeP) de petróleo, o estudo minucioso das características de um reservatório é imperativo para a criação de modelos de simulação que representem adequadamente as suas propriedades petrofísicas. A disponibilidade de um modelo adequado é fundamental para a obtenção de previsões acertadas acerca da produção do reservatório, e isso impacta diretamente a tomada de decisões gerenciais. Devido às incertezas inerentes ao processo de caracterização, ao longo da vida produtiva do reservatório, periodicamente o seu modelo de simulação correspondente precisa ser ajustado. Todavia, a tarefa de ajustar as propriedades do modelo se traduz em um problema de otimização complexo, onde o número de variáveis envolvidas é tão maior quanto maior for a quantidade de blocos que compõem a malha do modelo de simulação. Na maioria das vezes esses ajustes envolvem processos empíricos que demandam elevada carga de trabalho do especialista. Esta pesquisa investiga e avalia uma nova técnica computacional híbrida, que combina Algoritmos Genéticos e Geoestatística Multiponto, para a otimização de propriedades em modelos de reservatórios. Os resultados obtidos demonstram a robustez e a confiabilidade da solução proposta, uma vez que, diferentemente das abordagens tradicionalmente adotadas, é capaz de gerar modelos que não apenas proporcionam um ajuste adequado das curvas de produção, mas também que respeitam as características geológicas do reservatório.