[en] A MOBILE AND ONLINE OUTLIER DETECTION OVER MULTIPLE DATA STREAMS: A COMPLEX EVENT PROCESSING APPROACH FOR DRIVING BEHAVIOR DETECTION

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: IGOR OLIVEIRA VASCONCELOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30648&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30648&idi=2
http://doi.org/10.17771/PUCRio.acad.30648
Resumo: [pt] Dirigir é uma tarefa diária que permite uma locomoção mais rápida e mais confortável, no entanto, mais da metade dos acidentes fatais estão relacionados à imprudência. Manobras imprudentes podem ser detectadas com boa precisão, analisando dados relativos à interação motorista-veículo, por exemplo, curvas, aceleração e desaceleração abruptas. Embora existam algoritmos para detecção online de anomalias, estes normalmente são projetados para serem executados em computadores com grande poder computacional. Além disso, geralmente visam escala através da computação paralela, computação em grid ou computação em nuvem. Esta tese apresenta uma abordagem baseada em complex event processing para a detecção online de anomalias e classificação do comportamento de condução. Além disso, objetivamos identificar se dispositivos móveis com poder computacional limitado, como os smartphones, podem ser usados para uma detecção online do comportamento de condução. Para isso, modelamos e avaliamos três algoritmos de detecção online de anomalia no paradigma de processamento de fluxos de dados, que recebem os dados dos sensores do smartphone e dos sensores à bordo do veículo como entrada. As vantagens que o processamento de fluxos de dados proporciona reside no fato de que este reduz a quantidade de dados transmitidos do dispositivo móvel para servidores/nuvem, bem como se reduz o consumo de energia/bateria devido à transmissão de dados dos sensores e possibilidade de operação mesmo se o dispositivo móvel estiver desconectado. Para classificar os motoristas, um mecanismo estatístico utilizado na mineração de documentos que avalia a importância de uma palavra em uma coleção de documentos, denominada frequência de documento inversa, foi adaptado para identificar a importância de uma anomalia em um fluxo de dados, e avaliar quantitativamente o grau de prudência ou imprudência das manobras dos motoristas. Finalmente, uma avaliação da abordagem (usando o algoritmo que obteve melhor resultado na primeira etapa) foi realizada através de um estudo de caso do comportamento de condução de 25 motoristas em cenário real. Os resultados mostram uma acurácia de classificação de 84 por cento e um tempo médio de processamento de 100 milissegundos.