[en] QUALITY ENHANCEMENT OF HIGHLY DEGRADED MUSIC USING DEEP LEARNING-BASED PREDICTION MODELS
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60905&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60905&idi=2 http://doi.org/10.17771/PUCRio.acad.60905 |
Resumo: | [pt] A degradação da qualidade do áudio pode ter muitas causas. Para aplicações musicais, esta fragmentação pode levar a experiências altamente desagradáveis. Algoritmos de restauração podem ser empregados para reconstruir partes do áudio de forma semelhante à reconstrução da imagem, em uma abordagem chamada Audio Inpainting. Os métodos atuais de última geração para Audio Inpainting cobrem cenários limitados, com janelas de intervalo bem definidas e pouca variedade de gêneros musicais. Neste trabalho, propomos um método baseado em aprendizado profundo para Audio Inpainting acompanhado por um conjunto de dados com condições de fragmentação aleatórias que se aproximam de situações reais de deficiência. O conjunto de dados foi coletado utilizando faixas de diferentes gêneros musicais, o que proporciona uma boa variabilidade de sinal. Nosso melhor modelo melhorou a qualidade de todos os gêneros musicais, obtendo uma média de 13,1 dB de PSNR, embora tenha funcionado melhor para gêneros musicais nos quais os instrumentos acústicos são predominantes. |