[en] ADAPTIVE ROUTING IN DATA COMMUNICATION NETWORKS THROUGH REINFORCEMENT LEARNING
Ano de defesa: | 2001 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1348&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1348&idi=2 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1348&idi=4 http://doi.org/10.17771/PUCRio.acad.1348 |
Resumo: | [pt] Esta dissertação investiga a aplicação dos métodos de Reinforcement Learning na descoberta de rotas ótimas em uma rede de comunicação. Uma rede de comunicação real possui um comportamento dinâmico, mudando seu estado com o tempo. Os algoritmos de roteamento devem, portanto, oferecer rapidez na resposta às mudanças do estado da rede. O objetivo do trabalho é avaliar a aplicação de técnicas de Reinforcement Learning (RL) como base de algoritmos adaptativos de roteamento de pacotes. O problema de roteamento de pacotes sob a visão de RL consiste na definição de cada nó na rede como um agente RL, sendo que este agente deve definir ações de forma a minimizar uma função objetivo que pode ser o tempo de roteamento dos pacotes. Um dos objetivos do RL é precisamente aprender a tomar as ações que minimizem uma função. O trabalho consistiu de 4 etapas principais: um estudo sobre a área de Reinforcement Learning (RL); um estudo sobre a área de redes de comunicação e roteamento de pacotes; a modelagem do problema de roteamento como um sistema RL e implementação de diferentes métodos de RL para obter algoritmos de roteamento; e o estudo de casos. O estudo na área de Reinforcement Learning abrangeu desde as definições mais fundamentais: suas características, os elementos de um sistema RL e modelagem do ambiente como um Processo de Decisão de Markov, até os métodos básicos de solução: Programação Dinâmica, método de Monte Carlo, e o método de Diferenças Temporais. Neste último método, foram considerados dois algoritmos específicos: TD e Q-Learning. Em seguida, foi avaliado o parâmetro Eligibility Traces como uma alternativa para apressar o processo de aprendizado, obtendo o TD(lambda) e o Q(lambda) respectivamente. O estudo sobre Redes de Comunicação e Roteamento de pacotes envolveu os conceitos básicos de redes de comunicações, comutação por pacotes, a questão do roteamento de pacotes e os algoritmos existentes adaptativos e não adaptativos, que são utilizados na atualidade. Nas redes de comunicação, definidas como um conjunto de nós ligados através de enlaces de comunicação, para se enviar uma mensagem de um nó a outro, geralmente, a mensagem é quebrada em pedaços, chamados pacotes, e enviados através de outros nós, até chegar ao destino. Deste modo surge o problema de escolher os nós que levem o pacote o mais rápido possível até o nó destino. Os algoritmos analisados foram: Shortest Path Routing que procura os caminhos com menor número de nós intermediários, não sendo sensível às mudanças na carga nem na topologia da rede; Weighted Shortest Path Routing, que oferece um melhor desempenho a partir de uma visão global do estado da rede, que nem sempre é fácil de obter em redes reais e o algoritmo de Bellman-Ford, baseado em decisões de roteamento locais e atualizações periódicas, com algumas limitações para obter políticas em altas cargas. Este último é um dos algoritmos mais utilizados na atualidade, sendo base de muitos protocolos de roteamento existentes. A modelagem do problema de roteamento como um sistema RL foi inspirada por uma característica na definição de um sistema RL: um agente que interage com o ambiente e aprende a atingir um objetivo. Assim, a modelagem dos algoritmos tem como objetivo aprender a descobrir as rotas que minimizem o tempo de roteamento de pacotes desde uma origem até um dado destino. A avaliação de uma rota escolhida não pode ser obtida antes que o pacote alcance o seu destino final. Este fato faz com que os processos de aprendizado supervisionado tenham dificuldade de se aplicar a esse problema. Por outro lado, o Reinforcement Learning não necessita de um par entrada-resposta para fazer o aprendizado, permitindo-lhe abordar o problema com relativa facilidade. Na modelagem efetuada, cada nó na rede se comporta como um agente de RL que age na própria rede, a qual é o ambiente. A informação das rotas é armazenada nas funções de valor existentes em todos os nós da rede para |