[en] DETERMINATION OF BRAZILIAN ELECTRICITY MARKET PRICE AND VALUE OF ENERGY DERIVATIVES WITH MONTE CARLO SIMULATION APPROACH FOR GENETIC ALGORITHM
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18825&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18825&idi=2 http://doi.org/10.17771/PUCRio.acad.18825 |
Resumo: | [pt] No Brasil, o comportamento dos preços da energia elétrica no mercado de curto prazo é especialmente incerto, pois não segue um padrão definido e é obtido a partir de um modelo computacional e não pelo equilíbrio de mercado entre oferta e demanda. Diante disto o mercado de opções e derivativos ao mesmo tempo em que promissor, tendo em vista as experiências de outros países, é insipiente, pois os agentes não conseguem utilizar metodologias tradicionais para a precificação destes produtos e acabam formatando os valores por experiências empíricas e segundo aceitação do mercado. Muitos trabalhos já foram desenvolvidos propondo novas soluções para a previsão de preços modificando profundamente a estrutura atual, por outro lado o objetivo deste trabalho em sua primeira parte não busca modificar o modelo atual de previsão de preços que serve de alicerce para os contratos atuais, e por isso não pode ser desprezada. Este trabalho em sua primeira parte visa desenvolver um modelo para representar o comportamento dos preços no mercado de energia brasileiro e melhorar a previsão de preços que atualmente é fornecido pelo Newave, mas sem deslocar-se dos resultados gerados por ele. Em um segundo momento busca uma metodologia computacionalmente viável para determinar o valor de opções que podem ser oferecidas em contratos de opção de longo prazo. Para desenvolver a solução, foi proposto um processo estocástico que pudesse modelar a previsão dos preços no mercado de curto prazo reduzindo a volatilidade, mas sem se distanciar do atual modelo de previsão. Num segundo momento para permitir a precificação destes contratos este estudo aprofundou-se na teoria das opções que permite considerar as flexibilidades gerenciais, tendo por objetivo maximizar o retorno de uma determinada opção contratual. Assim, com o emprego de ferramentas como o Algoritmo Genético e Simulação Monte Carlo para aproximar a curva de exercício ótimo e o novo processo estocástico de formação de preço, foi possível determinar o valor das opções estudadas. A principal contribuição deste trabalho é criar uma metodologia coerente de precificação de opções contratuais, atualmente inexistente no mercado e que possa ser testada e avaliada pelos operadores, contribuindo para o aumento e desenvolvimento do mercado de derivativos no setor elétrico brasileiro. |