[en] EXTRACTING AND CONNECTING PLAINTIFF S LEGAL CLAIMS AND JUDICIAL PROVISIONS FROM BRAZILIAN COURT DECISIONS

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: WILLIAM PAULO DUCCA FERNANDES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158&idi=2
http://doi.org/10.17771/PUCRio.acad.50158
Resumo: [pt] Neste trabalho, propomos uma metodologia para anotar decisões judiciais, criar modelos de Deep Learning para extração de informação, e visualizar de forma agregada a informação extraída das decisões. Instanciamos a metodologia em dois sistemas. O primeiro extrai modificações de um tribunal de segunda instância, que consiste em um conjunto de categorias legais que são comumente modificadas pelos tribunais de segunda instância. O segundo (i) extrai as causas que motivaram uma pessoa a propor uma ação judicial (causa de pedir), os pedidos do autor e os provimentos judiciais dessas ações proferidas pela primeira e segunda instância de um tribunal, e (ii) conecta os pedidos com os provimentos judiciais correspondentes. O sistema apresenta seus resultados através de visualizações. Extração de Informação para textos legais tem sido abordada usando diferentes técnicas e idiomas. Nossas propostas diferem dos trabalhos anteriores, pois nossos corpora são compostos por decisões de primeira e segunda instância de um tribunal brasileiro. Para extrair as informações, usamos uma abordagem tradicional de Aprendizado de Máquina e outra usando Deep Learning, tanto individualmente quanto como uma solução combinada. Para treinar e avaliar os sistemas, construímos quatro corpora: Kauane Junior para o primeiro sistema, e Kauane Insurance Report, Kauane Insurance Lower e Kauane Insurance Upper para o segundo. Usamos dados públicos disponibilizados pelo Tribunal de Justiça do Estado do Rio de Janeiro para construir os corpora. Para o Kauane Junior, o melhor modelo (Fbeta=1 de 94.79 por cento) foi uma rede neural bidirecional Long Short-Term Memory combinada com Conditional Random Fields (BILSTM-CRF); para o Kauane Insurance Report, o melhor (Fbeta=1 de 67,15 por cento) foi uma rede neural bidirecional Long Short-Term Memory com embeddings de caracteres concatenados a embeddings de palavras combinada com Conditional Random Fields (BILSTM-CE-CRF). Para o Kauane Insurance Lower, o melhor (Fbeta=1 de 89,12 por cento) foi uma BILSTM-CE-CRF; para o Kauane Insurance Upper, uma BILSTM-CRF (Fbeta=1 de 83,66 por cento).