[pt] ANÁLISE PROBABILÍSTICA DE SEMÂNTICA LATENTE APLICADA A SISTEMAS DE RECOMENDAÇÃO

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: DIOGO SILVEIRA MENDONCA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13073&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13073&idi=2
http://doi.org/10.17771/PUCRio.acad.13073
Resumo: [pt] Os sistemas de recomendação são um tema de pesquisa constante devido a sua grande quantidade de aplicações práticas. Estes sistemas podem ser abordados de diversas maneiras, sendo uma das mais utilizadas a filtragem colaborativa, em que para recomendar um item a um usuário são utilizados dados de comportamento de outros usuários. Porém, nem sempre os algoritmos de filtragem colaborativa atingem níveis de precisão necessários para serem utilizados em aplicações reais. Desta forma este trabalho tem como objetivo avaliar o desempenho da análise probabilística de semântica latente (PLSA) aplicado a sistemas de recomendação. Este modelo identifica grupos de usuários com comportamento semelhante através de atributos latentes, permitindo que o comportamento dos grupos seja utilizado na recomendação. Para verificar a eficácia do método, apresentamos experimentos com o PLSA utilizando os problemas de recomendação de anúncios na web e a recomendação de filmes. Evidenciamos uma melhoria de 18,7% na precisão da recomendação de anúncios na web e 3,7% de melhoria no erro quadrático sobre a Média das Médias para o corpus do Netflix. Além dos experimentos, o algoritmo foi implementado de forma flexível e reutilizável, permitindo adaptação a outros problemas com esforço reduzido. Tal implementação também foi incorporada como um módulo do LearnAds, um framework de recomendação de anúncios na web.