[en] PREDICTING DRY GAS SEALS RELIABILITY WITH MACHINE LEARNING TECHNIQUES DEVELOPED FROM SCARCE DATA

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: MATHEUS HOFFMANN BRITO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=2
http://doi.org/10.17771/PUCRio.acad.61107
Resumo: [pt] A correta operação de equipamentos na indústria de Óleo e Gás é fundamental para a reduzir perdas ambientais, humanas e financeiras. Neste cenário, foram estudados selos secos a gás (em inglês,DGS) de compressores cetrífugos, por serem identificados como os mais críticos devido à extensão dos danos potenciais causados em caso de falha. Neste estudo, foram desenvolvidos 31 modelos regressivos disponíveis no Scikit-Learn através de técnicas de aprendizado de máquina (em inglês, ML). Estes foram treinados com um conjunto de dados escassos, criado a partir de uma técnica de planejamento de experimentos, para substituir simulações numéricas na previsão de confiabilidade operacional de DGSs. Primeiramente, foi validado um modelo baseado na simulação da Dinâmica dos Fluidos Computacionais (em inglês, CFD) para representar o escoamento do gás entre as faces de selagem, a fim de possibilitar o cálculo da confiabilidade operacional do equipamento. Neste, foi utilizado o software de CFD de código aberto OpenFOAM em conjunto com o banco de dados de substâncias do software REFPROP, a fim de possibilitar ao usuário definir a mistura gasosa e as condições operacionais avaliadas. Em seguida, foram realizados dois estudos de caso seguindo um fluxograma genérico de projeto proposto. O primeiro consistiu na determinação de um modelo regressivo para estimar a confiabilidade de um DGS cuja composição gasosa (composta por metano, etano e octano) é fixa porém suas condições operacionais podem ser alteradas. Já o segundo consistiu na determinação de um modelo regressivo mais robusto, onde tanto a composição gasosa como as condições operacionais podem ser alteradas. Por fim, foi avaliada a viabilidade de implementação de ambos os modelos em condições reais de operação, baseado na norma infinita obtida para a predição do conjunto de teste. As performances atingidar foram de 1.872 graus Celsius e 6.951 grau Celsius para o primeiro e segundo estudos de caso, respectivamente.