[pt] DOIS PROBLEMAS DE OTIMIZAÇÃO EM GRAFOS: TRANSPORTE EM REDES DE DUTOS E BUSCA COM CUSTOS DE ACESSOS

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: ARTUR ALVES PESSOA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4356&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4356&idi=2
http://doi.org/10.17771/PUCRio.acad.4356
Resumo: [pt] Consideramos dois problemas de otimização combinatória: o problema de transporte em redes de dutos (PTD) e o problema de busca com custos de acesso variados (PBC). No PTD, é dado um grafo orientado G = (N,A) onde cada arco tem um duto associado. Também é dado um conjunto de bateladas, onde cada batelada está inicialmente em um nó ou arco do grafo e tem um nó de destino. Algumas bateladas são chamadas de proteláveis. O objetivo do PTD é encontrar uma sequência de operações que transporte todas as bateladas não-proteláveis aos seus respectivos nós de destino. Primeiro, demonstramos o PTD é NP-difícil, mesmo que o grafo G seja acíclico. Em seguida, apresentamos um algoritmo polinomial chamado de BPA. Este algoritmo resolve o PTDS, uma variação do PTD, para qualquer grafo G. Para grafos acíclicos, o BPA minimiza uma função de custo genérica. Para minimizar o makespan no PTDS, demonstramos que não existe algoritmo polinomial n1-e - aproximado para nenhum E>0, a menos que P = NP, onde n é o tamanho da instância. Este resultado também vale se G é acíclico e planar. No PBC, são dados um vetor ordenado e o custo de acessar cada um de seus n elementos. O objetivo do problema é encontrar uma estratégia de busca que minimize o custo médio com probabilidades uniformes (PBCM) ou o custo do pior caso (PBCN). Em ambos os casos, o melhor algoritmo exato conhecido executa em tempo O(n3) e espaço O(n2). Para o PBCN, apresentamos o algoritmo da razão, que executa em tempo O(n2) e espaço O(n). Este algoritmo sempre obtém uma solução de custo menor ou igual a 41n(n+1)/n, assumindo que a soma dos custos é 1. Além disso, desenvolvemos dois algoritmos aproximados: um para o PBCM e outro para o PBPC. Ambos constroem soluções (2+E+0(1)) - aproximadas, para qualquer E>0, em tempo e espaço O(n).