[en] INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: EVANDRO LUIZ MENDES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3336&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3336&idi=2
http://doi.org/10.17771/PUCRio.acad.3336
Resumo: [pt] Nesta dissertação é desenvolvida uma metodologia para previsão de demanda mensal de energia elétrica considerando cenários de racionamento. A metodologia usada consiste em, a partir das taxas de crescimento da série temporal, identificar e eliminar os efeitos do racionamento de energia elétrica através da aplicação de Modelos Lineares Dinâmicos. São analisadas também estruturas de intervenção nos modelos estatísticos de Box & Jenkins e Holt & Winters. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência da metodologia proposta, dado a grande dificuldade para solucionar o problema a partir dos modelos estatísticos de Box & Jenkins e Holt & Winters. Esta solução é então proposta como a mais viável para criar cenários de racionamento e pósracionamento de energia para ser utilizado por agentes do sistema elétrico nacional.