[pt] ALGORITMOS ADAPTATIVOS COM EXPLORAÇÃO DE ESPARSIDADE EM REDES DE SENSORES DISTRIBUÍDAS
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=2 http://doi.org/10.17771/PUCRio.acad.27190 |
Resumo: | [pt] Neste trabalho de dissertação são propostos algoritmos adaptativos que exploram a esparsidade em redes distribuídas de sensores para estimação de parâmetros e estimação espectral. São desenvolvidos algoritmos gradiente conjugado (CG) distribuído para os protocolos consenso e difusão em versão convencional e modificada (MCG). Esses algoritmos são desenvolvidos com exploração de esparsidade usando as funções penalidades l1 e log-sum. Os métodos propostos apresentam um melhor desempenho en termos de velocidade de convergência e desvio médio quadratico (MSD) que as já conhecidas variantes distribuídas do algoritmo least mean square (LMS) e muito próximo ao desempenho do algoritmo recursive least square (RLS). Além disso, propõe-se um algoritmo distribuído de optimização alternada de variáveis discretas e contínuas (DAMDC) baseado no LMS. O algoritmo DAMDC-LMS apresenta um desempenho muito próximo ao algoritmo oráculo e tem maior velocidade de convergência que os algoritmos estudados com exploração de esparsidade. Os resultados numéricos mostram que o algoritmo DAMDC-LMS pode ser aplicado em vários cenários. |