[pt] IDENTIFICAÇÃO MODAL DE DANOS EM PASSARELAS METÁLICAS COM USO DE REDES NEURAIS ARTIFICIAIS
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58155&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58155&idi=2 http://doi.org/10.17771/PUCRio.acad.58155 |
Resumo: | [pt] As estruturas civis durante toda a sua vida útil estão sujeitas a diversas ações de deterioração, desgastes ou corrosão de seus membros, que podem gerar variações em suas características físicas. Estas ações podem causar danos ao seu funcionamento, podendo chegar até ao colapso, em casos mais extremos. Além disso, o avanço tecnológico que permite a concepção de estruturas cada vez mais esbeltas, e que geram assim possíveis vibrações excessivas, elevam o monitoramento estrutural a um patamar de extrema importância e atenção na ótica dos gestores desses sistemas. Particularmente, no caso de obras de infraestrutura como pontes e passarelas, as grandes dimensões são características significativas que tornam as práticas de monitoramento e inspeção mais difíceis. Dessa forma, com o objetivo auxiliar no monitoramento estrutural e direcionar inspeções visuais, diversos métodos de identificação de danos são estudados com base nas características dinâmicas das estruturas, como as frequências naturais e os modos de vibração. A revisão de literatura, porém, demonstra que há uma dificuldade na aplicação desta identificação em estruturas mais complexas de grande porte. Assim, este trabalho visa estudar esta dificuldade e propor uma solução baseada na construção de um índice, composto pelos modos de vibração. Além disso, através da aplicação de algoritmos de aprendizado de máquina e de reconhecimento de padrões, como as Redes Neurais Artificiais (RNAs), propõese aumentar a eficiência do processo de localização espacial e quantificação dos danos. Em seguida, a metodologia proposta é, então, aplicada em um modelo de passarela metálica inspirado em uma estrutura real presente na região do Terminal Centro Olímpico da cidade do Rio de Janeiro – RJ. A identificação de danos é estudada através da aplicação do índice proposto, incorporando as redes neurais e avaliando do impacto da variação dos parâmetros da RNA na eficiência global da detecção. |