[pt] ROTEAMENTO DE NAVIOS E OTIMIZAÇÃO DE VELOCIDADE COM PERFIS DE CONSUMO DE COMBUSTÍVEL HETEROGÊNEOS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: GABRIEL ANDRE HOMSI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34172&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34172&idi=2
http://doi.org/10.17771/PUCRio.acad.34172
Resumo: [pt] A indústria de transporte marítimo é essencial para o comércio internacional. No entanto, no despertar da crise financeira de 2008, essa indústria foi severamente atingida. Nessas ocasiões, empresas de transporte só são capazes de obter lucro se suas frotas forem roteadas de forma eficaz. Neste trabalho, nós estudamos uma classe de problemas de roteamento de navios relacionados ao Pickup and Delivery Problem with Time Windows. Para resolver esses problemas, nós introduzimos um método heurístico e um exato. O método heurístico é uma meta-heurística híbrida com uma vizinhança larga baseada em set partitioning, enquanto o método exato é um algoritmo de branch-and-price. Nós conduzimos experimentos em um conjunto de instâncias baseadas em rotas de navios reais. Os resultados obtidos mostram que nossos algoritmos superam as metodologias estado da arte. Em seguida, nós adaptamos o conjunto de instâncias para modelar um problema de roteamento de navios no qual a velocidade em cada segmento de rota é uma variável de decisão, e o consumo de combustível por unidade de tempo é uma função convexa da velocidade e carga do navio. A fim de resolver esse novo problema de roteamento de navios com otimização de velocidade, nós estendemos nossa meta-heurística para encontrar decisões de velocidade ótimas em toda avaliação de solução vizinha de uma busca local. Nossos experimentos demonstram que essa abordagem pode ser altamente rentável, e que requer apenas um aumento moderado de recursos computacionais.