[pt] CONTROLE PREDITIVO COM APRENDIZADO POR REFORÇO PARA PRODUÇÃO DE ÓLEO EM POÇOS INTELIGENTES

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ALVARO GUSTAVO TALAVERA LOPEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47049&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47049&idi=2
http://doi.org/10.17771/PUCRio.acad.47049
Resumo: [pt] Este trabalho apresenta a modelagem e o desenvolvimento de uma metodologia baseada em Controle com Modelo Preditivo (MPC) aplicada ao controle da produção de óleo em um reservatório de petróleo com poços produtores e injetores já existentes. A estratégia MPC utiliza um modelo de aprendizado de máquina, baseado em Aprendizado por Reforço (Reinforcement Learning), como método de busca da política ótima de controle. Os experimentos se realizaram em um reservatório petrolífero sintético com atuadores que são 3 válvulas de injeção de água. Assim, a atuação é realizada através das taxas de injeção de água para determinados intervalos de tempo. As variáveis de saída do campo são: Pressão média do reservatório, taxa diária de produção de óleo, gás, água e water cut na produção. A previsão dessas variáveis é realizada mediante a utilização de uma proxy, a qual é um modelo identificado da planta implementado utilizando redes neurais. Os resultados obtidos indicam que o modelo proposto é capaz de controlar a produção de óleo mesmo com perturbações no poço produtor, para diferentes valores de referência de produção de óleo.