[pt] APROXIMADOR DE FUNÇÃO PARA SIMULADOR DE RESERVATÓRIOS PETROLÍFEROS UTILIZANDO TÉCNICAS DE INTELIGÊNCIA COMPUTACIONAL E PROJETO DE EXPERIMENTOS FATORIAIS FRACIONADO

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: ALEXANDRE DE CASTRO ALMEIDA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13210&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13210&idi=2
http://doi.org/10.17771/PUCRio.acad.13210
Resumo: [pt] Em diversas etapas da cadeia de trabalho da Indústria de Óleo e Gás a atividade de Engenharia de Petróleo demanda processos que envolvem otimização. Mais especificamente, no gerenciamento de reservatórios, as metodologias para a tomada de decisão pelo uso de poços inteligentes envolvem processos de otimização. Nestes processos, normalmente, visa-se maximizar o VPL (Valor Presente Líquido), que é calculado através das curvas de produção de óleo, gás e água fornecidas por um simulador de reservatório. Estas simulações demandam alto custo computacional, muitas vezes inviabilizando processos de otimização. Neste trabalho, empregam-se técnicas de inteligência computacional - modelos de redes neurais artificiais e neuro-fuzzy - para a construção de aproximadores de função para simulador de reservatórios com o objetivo de diminuir o custo computacional de um sistema de apoio à decisão para utilização ou não de poços inteligentes em reservatórios petrolíferos. Para reduzir o número de amostras necessárias para a construção dos modelos, utiliza-se também Projeto de Experimentos Fatoriais Fracionado. Os aproximadores de função foram testados em dois reservatórios petrolíferos: um reservatório sintético, muito sensível às mudanças no controle de poços inteligentes e outro com características reais. Os resultados encontrados indicam que estes aproximadores de reservatório conseguem bom desempenho na substituição do simulador no processo de otimização - devido aos baixos erros encontrados e à substancial diminuição do custo computacional. Além disto, os testes demonstraram que a substituição total do simulador pelo aproximador se revelou uma interessante estratégia para utilização do sistema de otimização, fornecendo ao especialista uma rápida ferramenta de apoio à decisão.