[pt] ALGUMAS RELAÇÕES ENTRE CÁLCULO DE SEQUENTES E DEDUÇÃO NATURAL

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: CECILIA REIS ENGLANDER LUSTOSA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24302&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24302&idi=2
http://doi.org/10.17771/PUCRio.acad.24302
Resumo: [pt] Segerberg apresentou uma prova geral da completude para lógicas proposicionais. Para tal, um sistema de dedução foi definido de forma que suas regras sejam regras para um operador booleano arbitrário para uma dada lógica proposicional. Cada regra desse sistema corresponde a uma linha na tabela de verdade desse operador. Na primeira parte desse trabalho, mostramos uma extensão da ideia de Segerberg para lógicas proposicionais finito-valoradas e para lógicas não-determinísticas. Mantemos a ideia de definir um sistema de dedução cujas regras correspondam a linhas de tabelas verdade, mas ao invés de termos um tipo de regra para cada valor de verdade da lógica correspondente, usamos uma representação bivalente que usa a técnica de fórmulas separadoras definidas por Carlos Caleiro e João Marcos. O sistema definido possui tantas regras que pode ser difícil trabalhar com elas. Acreditamos que um sistema de cálculo de sequentes definido de forma análoga poderia ser mais intuitivo. Motivados por essa observação, a segunda parte dessa tese é dedicada à definição de uma tradução entre cálculo de sequentes e dedução natural, onde procuramos definir uma bijeção melhor do que as já existentes.