[pt] O TEOREMA DE TOMITA-TAKESAKI E OS ESTADOS KMS
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35515&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35515&idi=2 http://doi.org/10.17771/PUCRio.acad.35515 |
Resumo: | [pt] Neste trabalho apresentamos a teoria de Tomita-Takesaki para uma álgebra de Von Neumann M com vetor cíclico separante u. Usamos o caso finito dimensional para motivar a teoria, depois prosseguimos para os argumentos analíticos geralmente empregados para provar o caso infinito dimensional. Também calculamos os operadores modulares da teoria para três exemplos padrão. Na mecânica estatística quântica, os estados de equilíbrio termodinâmico de um sistema físico com um número de partículas e volume finito são modelados pelos estados de Gibbs, enquanto no caso infinito eles são modelados pelos chamados estados KMS através da abordagem de álgebra de operadores. Mostramos como a teoria de Tomita-Takesaki fornece estados KMS naturais e a unicidade da evolução temporal do sistema físico para esses estados. |