[pt] LINGUAGEM DE ESPECIFICAÇÃO DE CIRCUITO NEURONAL E FERRAMENTAS PARA MODELAGEM DO CÉREBRO VIRTUAL DA MOSCA DA FRUTA

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: DANIEL SALLES CHEVITARESE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=29820&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=29820&idi=2
http://doi.org/10.17771/PUCRio.acad.29820
Resumo: [pt] O cérebro da Drosophila é um sistema atrativo para o estudo da lógica do circuito neural, porque implementa o comportamento sensorial complexo com um sistema nervoso que compreende um número de componentes neurais que é de cinco ordens de grandeza menor do que o de vertebrados. A análise do conectoma da mosca, revelou que o seu cérebro compreende cerca de 40 subdivisões distintas chamadas unidades de processamento local (LPUs), cada uma das quais é caracterizada por circuitos de processamento únicos. As LPUs podem ser consideradas os blocos de construção funcionais da cérebro, uma vez que quase todas LPUs identificadas correspondem a regiões anatômicas do cérebro associadas com subsistemas funcionais específicos tais como a sensação e locomoção. Podemos, portanto, emular todo o cérebro da mosca, integrando suas LPUs constituintes. Embora o nosso conhecimento do circuito interno de muitas LPUs está longe de ser completa, análises dessas LPUs compostas pelos sistemas olfativos e visuais da mosca sugerem a existência de repetidos sub-circuitos que são essenciais para as funções de processamento de informações fornecidas por cada LPU. O desenvolvimento de modelos LPU plaussíveis, portanto, requer a habilidade de especificar e instanciar sub-circuitos, sem referência explícita a seus neurônios constituintes ou ligações internas. Para este fim, este trabalho apresenta um arcabouço para modelar e especificar circuitos do cérebro, proporcionando uma linguagem de especificação neural chamada CircuitML, uma API Python para melhor manipular arquivos CircuitML e um conector otimizado para neurokernel para a simulação desses LPUs em GPU. A CircuitML foi concebida como uma extensão para NeuroML (NML), que é uma linguagem para de descrição de redes neurais biológicas baseada em XML que fornece primitivas para a definição de sub-circuitos neurais. Sub-circuitos são dotados de portas de interface que permitem a sua ligação a outros sub-circuitos através de padrões de conectividade neural.