[pt] ALGORITMO PRICE-AND-CUT COM 3-SRCS E ENUMERAÇÃO DE COLUNAS PARA O PROBLEMA DE ALOCAÇÃO GENERALIZADA

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: RAFAEL AZEVEDO MOSCOSO SILVA CRUZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53255&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53255&idi=2
http://doi.org/10.17771/PUCRio.acad.53255
Resumo: [pt] Esta dissertação estuda formulações, algoritmos e métodos exatos para resolver instâncias do Problema de Alocação Generalizada (PAG) com uma separação de desigualdades (3, 0.5)-SRC que viabilize a enumeração de colunas. Este trabalho é motivado pela perspectiva de alcançar o estado-da-arte com resultados competitivos comparáveis às melhores soluções encontradas na literatura por Avella (2010) e Michelon (2012). A pesquisa abrange métodos exatos e heurísticas, com ênfase no estudo que aborda a decomposição de Dantzig-Wolfe, o algoritmo de geração de colunas, a estabilização de colunas por meio da ponderação de duais proposto por Wentges (1997) e a enumeração de colunas habilitada pela minimização do gap decorrente do algoritmo de price-and-cut. O algoritmo de price-and-cut desenvolvido recorre à geração de colunas (pricing) aliada à separação de (3, 0.5)-SRCs para aumentar o lower bound gerado, assim minimizando o gap. A geração de colunas implementada é inspirada no algoritmo de Savelsbergh (1997); e a separação de (3, 0.5)-SRCs é motivada pelo trabalho de Jepsen (2008) e pelo algoritmo branch-cut-andprice proposto por Poggi e Uchoa (2016) para o CVRP. De acordo com os experimentos computacionais, as desigualdades adotadas são capazes de reduzir o gap suficientemente para viabilizar a enumeração de colunas em diversas instâncias do PAG com até 200 tarefas e 20 máquinas. O método utilizado obteve resultados compatíveis às melhores soluções conhecidas, enumerando todas as colunas necessárias para cobrir o gap determinado pelo price-and-cut. Esse resultado incentiva futuras pesquisas para estender a aplicação do algoritmo a instâncias maiores e mais difíceis.