[pt] ABORDAGENS DE INFERÊNCIA EVOLUCIONÁRIA EM MODELOS ADAPTATIVOS
Ano de defesa: | 2003 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3726&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3726&idi=2 http://doi.org/10.17771/PUCRio.acad.3726 |
Resumo: | [pt] Em muitas aplicações reais de processamento de sinais, as observações do fenômeno em estudo chegam seqüencialmente no tempo. Consequentemente, a tarefa de análise destes dados envolve estimar quantidades desconhecidas em cada observação concebida do fenômeno. Na maioria destas aplicações, entretanto, algum conhecimento prévio sobre o fenômeno a ser modelado está disponível. Este conhecimento prévio permite formular modelos Bayesianos, isto é, uma distribuição a priori sobre as quantidades desconhecidas e uma função de verossimilhança relacionando estas quantidades com as observações do fenômeno. Dentro desta configuração, a inferência Bayesiana das quantidades desconhecidas é baseada na distribuição a posteriori, que é obtida através do teorema de Bayes. Infelizmente, nem sempre é possível obter uma solução analítica exata para esta distribuição a posteriori. Graças ao advento de um formidável poder computacional a baixo custo, em conjunto com os recentes desenvolvimentos na área de simulações estocásticas, este problema tem sido superado, uma vez que esta distribuição a posteriori pode ser aproximada numericamente através de uma distribuição discreta, formada por um conjunto de amostras. Neste contexto, este trabalho aborda o campo de simulações estocásticas sob a ótica da genética Mendeliana e do princípio evolucionário da sobrevivência dos mais aptos. Neste enfoque, o conjunto de amostras que aproxima a distribuição a posteriori pode ser visto como uma população de indivíduos que tentam sobreviver num ambiente Darwiniano, sendo o indivíduo mais forte, aquele que possui maior probabilidade. Com base nesta analogia, introduziu-se na área de simulações estocásticas (a) novas definições de núcleos de transição inspirados nos operadores genéticos de cruzamento e mutação e (b) novas definições para a probabilidade de aceitação, inspirados no esquema de seleção, presente nos Algoritmos Genéticos. Como contribuição deste trabalho está o estabelecimento de uma equivalência entre o teorema de Bayes e o princípio evolucionário, permitindo, assim, o desenvolvimento de um novo mecanismo de busca da solução ótima das quantidades desconhecidas, denominado de inferência evolucionária. Destacamse também: (a) o desenvolvimento do Filtro de Partículas Genéticas, que é um algoritmo de aprendizado online e (b) o Filtro Evolutivo, que é um algoritmo de aprendizado batch. Além disso, mostra-se que o Filtro Evolutivo, é em essência um Algoritmo Genético pois, além da sua capacidade de convergência a distribuições de probabilidade, o Filtro Evolutivo converge também a sua moda global. Em conseqüência, a fundamentação teórica do Filtro Evolutivo demonstra, analiticamente, a convergência dos Algoritmos Genéticos em espaços contínuos. Com base na análise teórica de convergência dos algoritmos de aprendizado baseados na inferência evolucionária e nos resultados dos experimentos numéricos, comprova-se que esta abordagem se aplica a problemas reais de processamento de sinais, uma vez que permite analisar sinais complexos caracterizados por comportamentos não-lineares, não- gaussianos e nãoestacionários. |