[pt] COMBINANDO ESTRATÉGIAS PARA ESTIMAÇÃO DE EFEITOS DE TRATAMENTO

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: RAFAEL DE CARVALHO CAYRES PINTO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32737&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32737&idi=2
http://doi.org/10.17771/PUCRio.acad.32737
Resumo: [pt] Uma ferramenta importante na avaliação de políticas econômicas é a estimação do efeito médio de um programa ou tratamento sobre uma variável de interesse. A principal dificuldade desse cálculo deve-se µa atribuição do tratamento aos potenciais participantes geralmente não ser aleatória, causando viés de seleção quando desconsiderada. Uma maneira de resolver esse problema é supor que o econometrista observa um conjunto de características determinantes, a menos de um componente estritamente aleatório, da participação. Sob esta hipótese, conhecida como Ignorabilidade, métodos semiparamétricos de estimação foram desenvolvidos, entre os quais a imputação de valores contrafactuais e a reponderação da amostra. Ambos são consistentes e capazes de atingir, assintoticamente, o limite de eficiência semiparamétrico. Entretanto, nas amostras frequentemente disponíveis, o desempenho desses métodos nem sempre é satisfatório. O objetivo deste trabalho é estudar como a combinação das duas estratégias pode produzir estimadores com melhores propriedades em amostras pequenas. Para isto, consideramos duas formas de integrar essas abordagens, tendo como referencial teórico a literatura de estimação duplamente robusta desenvolvida por James Robins e co-autores. Analisamos suas propriedades e discutimos por que podem superar o uso isolado de cada uma das técnicas que os compõem. Finalmente, comparamos, num exercício de Monte Carlo, o desempenho desses estimadores com os de imputação e reponderação. Os resultados mostram que a combinação de estratégias pode reduzir o viés e a variância, mas isso depende da forma como é implementada. Concluímos que a escolha dos parâmetros de suavização é decisiva para o desempenho da estimação em amostras de tamanho moderado.