[en] BOOSTING FOR RECOMMENDATION SYSTEMS
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13225&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13225&idi=2 http://doi.org/10.17771/PUCRio.acad.13225 |
Resumo: | [pt] Com a quantidade de informação e sua disponibilidade facilitada pelo uso da Internet, diversas opções são oferecidas às pessoas e estas, normalmente, possuem pouca ou quase nenhuma experiência para decidir dentre as alternativas existentes. Neste âmbito, os Sistemas de Recomendação surgem para organizar e recomendar automaticamente, através de Aprendizado de Máquina, itens interessantes aos usuários. Um dos grandes desafios deste tipo de sistema é realizar o casamento correto entre o que está sendo recomendado e aqueles que estão recebendo a recomendação. Este trabalho aborda um Sistema de Recomendação baseado em Filtragem Colaborativa, técnica cuja essência está na troca de experiências entre usuários com interesses comuns. Na Filtragem Colaborativa, os usuários pontuam cada item experimentado de forma a indicar sua relevância, permitindo que outros do mesmo grupo se beneficiem destas pontuações. Nosso objetivo é utilizar um algoritmo de Boosting para otimizar a performance dos Sistemas de Recomendação. Para isto, utilizamos uma base de dados de anúncios com fins de validação e uma base de dados de filmes com fins de teste. Após adaptações nas estratégias convencionais de Boosting, alcançamos melhorias de até 3% sobre a performance do algoritmo original. |