[en] A STUDY OF MULTILABEL TEXT CLASSIFICATION ALGORITHMS USING NAIVE-BAYES
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9637&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9637&idi=2 http://doi.org/10.17771/PUCRio.acad.9637 |
Resumo: | [pt] A quantidade de informação eletrônica vem crescendo de forma acelerada, motivada principalmente pela facilidade de publicação e divulgação que a Internet proporciona. Desta forma, é necessária a organização da informação de forma a facilitar a sua aquisição. Muitos trabalhos propuseram resolver este problema através da classificação automática de textos associando a eles vários rótulos (classificação multirótulo). No entanto, estes trabalhos transformam este problema em subproblemas de classificação binária, considerando que existe independência entre as categorias. Além disso, utilizam limiares (thresholds), que são muito específicos para o conjunto de treinamento utilizado, não possuindo grande capacidade de generalização na aprendizagem. Esta dissertação propõe dois algoritmos de classificação automática de textos baseados no algoritmo multinomial naive Bayes e sua utilização em um ambiente on-line de classificação automática de textos com realimentação de relevância pelo usuário. Para testar a eficiência dos algoritmos propostos, foram realizados experimentos na base de notícias Reuters 21758 e na base de documentos médicos Ohsumed. |