[pt] SIMULAÇÃO DA TRANSLOCAÇÃO DE NANOPARTÍCULAS COM DEPENDÊNCIA DA TRAJETÓRIA

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: LUIZ FERNANDO VIEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61183&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61183&idi=2
http://doi.org/10.17771/PUCRio.acad.61183
Resumo: [pt] Esta tese trata do movimento de nanopartículas através de nanoporos – translocação – e como esse fenômeno pode ser utilizado como ferramenta de caracterização. Nanopartículas, não apenas ocorrem amplamente na natureza, mas também têm sido extensivamente aprimoradas em pesquisas acadêmicas e em desenvolvimento industrial. Devido às suas propriedades únicas, nanopartículas são utilizadas em diversas aplicações industriais. Ferramentas de caracterização que são acessíveis, fáceis de usar e robustas são fundamentais para pesquisa e controle de qualidade na ciência e tecnologia de nanopartículas. Raramente todas essas características desejáveis são encontradas em uma única ferramenta de caracterização. Por exemplo, o Espalhamento Dinâmico de Luz é uma técnica conhecida por ser de fácil execução, mas mede o tamanho de muitas partículas ao mesmo tempo, sendo propensa a erros em distribuições dispersas e mistas. Por outro lado, a visualização direta das partículas por Microscopia Eletrônica de Transmissão fornece informações precisas sobre o tamanho das partículas, mas é difícil de se realizar em larga escala e é propensa a viés de amostragem. O Sensoriamento via Nanoporos pode, no entanto, medir propriedades físicas em cada partícula individualmente e em alta escala. Experiências foram bem-sucedidas na caracterização da concentração, tamanho e carga elétrica de nanopartículas. No entanto, os resultados experimentais nem sempre são facilmente interpretáveis. Ferramentas de modelagem e simulação são usadas para esclarecer as relações complexas provenientes do ambiente em nanoescala. Apesar do grande desenvolvimento nesta área, simulações dependentes de trajetória que possam efetivamente reproduzir os pulsos da translocação ainda são escassas. Aqui, o formalismo de Poisson-NernstPlanck foi combinado com aprendizagem de máquina e Monte-Carlo Dinâmico para formar uma ferramenta de simulação que captura o movimento de difusão e eletroforese, obtendo os pulsos de corrente correspondentes a essas trajetórias. Esferas e hastes foram simuladas translocando poros de diferentes dimensões. As simulações sugerem limitações inerentes na resolução devido ao efeito Browniano. Enquanto estudos anteriores conseguiram simular apenas algumas trajetórias ou estimar estatísticas usando argumentos teóricos, neste estudo foram calculadas centenas de trajetórias, calculando estatísticas diretamente da população de resultados. A estrutura desenvolvida nesta pesquisa pode ser expandida para investigar outros sistemas, auxiliando no desenvolvimento do sensoriamento via nanoporos.