[en] AN AGENT-BASED SOFTWARE FRAMEWORK FOR MACHINE LEARNING TUNING

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: JEFRY SASTRE PEREZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35657&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35657&idi=2
http://doi.org/10.17771/PUCRio.acad.35657
Resumo: [pt] Hoje em dia, a enorme quantidade de dados disponíveis online apresenta um novo desafio para os processos de descoberta de conhecimento. As abordagens mais utilizadas para enfrentar esse desafio são baseadas em técnicas de aprendizado de máquina. Apesar de serem muito poderosas, essas técnicas exigem que seus parâmetros sejam calibrados para gerar modelos com melhor qualidade. Esses processos de calibração são demorados e dependem das habilidades dos especialistas da área de aprendizado de máquinas. Neste contexto, esta pesquisa apresenta uma estrutura baseada em agentes de software para automatizar a calibração de modelos de aprendizagem de máquinas. Esta abordagem integra conceitos de Engenharia de Software Orientada a Agentes (AOSE) e Aprendizado de Máquinas (ML). Como prova de conceito, foi utilizado o conjunto de dados Iris para mostrar como nossa abordagem melhora a qualidade dos novos modelos gerados por nosso framework. Além disso, o framework foi instanciado para um dataset de imagens médicas e finalmente foi feito um experimento usando o dataset Grid Sector.