[en] MULTICRITERION SEGMENTATION FOR LUNG NODULE DETECTION IN COMPUTED TOMOGRAPHY

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: VANESSA DE OLIVEIRA CAMPOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16423&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16423&idi=2
http://doi.org/10.17771/PUCRio.acad.16423
Resumo: [pt] Este trabalho propõe um novo algoritmo de segmentação baseado em crescimento de regiões para detecção de nódulos pulmonares em imagens de tomografia computadorizada. Para decidir, em cada iteração, se dois objetos adjacentes são fundidos em um único objeto, o algoritmo de segmentação calcula um índice de heterogeneidade baseada em múltiplos critérios. Entretanto, o algoritmo de segmentação depende de alguns parâmetros os quais foram encontrados utilizando algoritmo genético. Resultados experimentais mostraram que o método é robusto e promissor (chegando a uma sensibilidade de 80,9 % com 0,23 falsos positivos por exame). Além disso, indicam que o método proposto é capaz de fornecer um bom suporte para o diagnóstico do especialista.