[pt] PROPAGAÇÃO DE INCERTEZAS VIA EXPANSÃO POR CAOS POLINOMIAL EM SIMULAÇÃO DE RESERVATÓRIOS DE PETRÓLEO

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: KAREN GUEVARA RAMOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55951&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55951&idi=2
http://doi.org/10.17771/PUCRio.acad.55951
Resumo: [pt] Este trabalho tem por objetivo investigar a redução do custo computacional associado ao cálculo das principais estatísticas das saídas dos modelos de propagação de incertezas. Para tal, apresentamos uma implementação alternativa ao método tradicional de Monte Carlo, chamado Caos Polinomial; que é adequado a problemas onde o número de variáveis de incerteza não é muito alto. No método Caos Polinomial, o valor esperado e a variância das saídas do simulador são diretamente estimados, como funções de distribuições de probabilidade de variáveis de incerteza na entrada do simulador. A principal vantagem do método de Caos Polinomial é que o número de pontos necessários para uma boa estimativa das estatísticas da saída de um simulador, comparado com Monte Carlo, é menor. Aplicações de Caos Polinomial em reservatórios de petróleo serão apresentadas para a propagação de até quatro variáveis, apesar do método poder ser aplicado a problemas de dimensões maiores. Nossos principais resultados são aplicados a dois modelos de reservatórios de petróleo sintéticos.