[pt] ANÁLISE LIMITE NUMÉRICA USANDO PROGRAMAÇÃO SEMIDEFINIDA E CÔNICA DE SEGUNDA ORDEM COM APLICAÇÃO EM ESTABILIDADE DE TÚNEIS RASOS

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: JHONATAN EDWAR GARCIA ROJAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36904&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36904&idi=2
http://doi.org/10.17771/PUCRio.acad.36904
Resumo: [pt] Nesse trabalho é avaliada a solução numérica do colapso na frente de escavação em túneis rasos, através da teoria de análise limite numérico, usando o teorema do limite inferior, a partir da condição de equilíbrio para as condições plásticas, além de considerar o comportamento do material rígido perfeitamente plástico. O teorema de limite inferior implica em maximizar o fator multiplicador na carga atuante, por isso a análise limite se torna um problema de otimização, nele tem que se usar a programação matemática para ser resolvido. É avaliada a solução numérica tridimensional da análise limite através do método dos elementos finitos, usando malha de elementos hexaédricos de oito nós, a análise dos elementos finitos é feita com o próprio código gerado na linguagem de programação do MATLAB 2017.As metodologias de programação matemática empregadas são: programação cônica de segunda ordem e programação semidefinida. Antes deve-se adaptar os critérios de ruptura de Drucker Prager à programação cônica de segunda ordem e Mohr-Coulomb tridimensional à programação semidefinida. Para a otimização se usa o algoritmo comercial MOSEK Aps 7.1 baseado no método do ponto interior em grande escala, na linguagem do MATLAB 2017. Além disso, obteve-se o mecanismo de colapso através da propriedade da dualidade do problema de otimização, dualidade que é cumprida pelos teoremas de limite superior e inferior.