[en] EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DAMAGE AND STRESS TRANSFER MECHANISMS IN CEMENT MATERIALS

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: MARCELLO CONGRO DIAS DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67024&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67024&idi=2
http://doi.org/10.17771/PUCRio.acad.67024
Resumo: [pt] A interação entre o cimento e outros constituintes desempenha um papel importante em várias aplicações de Engenharia, como nas indústrias de construçãocivil e de óleo e gás (OeG). Na indústria da construção, os compósitos cimentícios reforçados com fibras (CRF) ganharam grande destaque por suas excelentes propriedades mecânicas. As fibras podem aumentar a resistência crítica à fissuração do compósito, melhorando a durabilidade do concreto convencional e controlando a propagação de fissuras na matriz cimentícia. Além disso, as fibras desenvolvem um mecanismo de ponte de transferência de tensões na interface, alterando o comportamento pós-pico do compósito. Por outro lado, na indústria de OeG, cimento e aço são elementos estruturais essenciais que devem garantir a integridade de poços e fornecer isolamento para a passagem de fluidos, especialmente em cenários de abandono. Esse mecanismo na interface é considerado crítico, uma vez que uma interação não eficaz pode permitir a formação de caminhos de vazamento no microanular ao longo da interface cimento-aço, gerando a formação de fissuras. Neste sentido, um estudo abrangente dos mecanismos de dano desenvolvidos na interface do cimento é essencial em ambas as aplicações para entender o comportamento mecânico do material. Portanto, faz-se necessário o desenvolvimento de modelos de elementos finitos que considerem os mecanismos de pullout (descolamento, adesão e atrito) e os parâmetros de interface que governam o comportamento mecânico local do cimento. Embora existam numerosos estudos experimentais e modelos numéricos na literatura, o estado-da-arte atual carece de formulações que investiguem os mecanismos de mapeamento de dano e as interações de transferência de tensão na interface do cimento, especialmente considerando diferentes tipos de matriz de cimento e geometrias de fibra de aço.Esta tese aborda uma lacuna crítica na literatura ao propor a modelagem numérica do descolamento interfacial e mecanismos de evolução de dano para materiais cimentícios avançados e em aplicações de integridade de poços. Modelos de elementos finitos elastoplásticos, incorporando formulações coesivas baseadas em superfícies de contato, são empregados para simular o comportamento da interface do cimento. Além disso, ensaios experimentais de caracterização mecânica e análises de microtomografia são realizados para validar e apoiar os resultados do modelo numérico, avaliando a resistência ao cisalhamento e a propagação de dano na interface do cimento. Assim sendo, esta pesquisa pode oferecer contribuições para engenheiros de diferentes áreas aprimorarem o desempenho mecânico e prototipar novos materiais avançados por meio da investigação da evolução do dano. Os modelos de elementos finitos desenvolvidos emergem como ferramentas valiosas para avaliações de desempenho do cimento de maneira eficaz, simulando confiavelmente o comportamento de pullout/pushout.