[pt] EVOLUINDO CÓDIGOS DE CORREÇÃO DE ERROS QUÂNTICOS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: DANIEL RIBAS TANDEITNIK
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=59800&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=59800&idi=2
http://doi.org/10.17771/PUCRio.acad.59800
Resumo: [pt] Métodos computacionais se tornam essenciais diante de problemas complexos onde a intuição humana e métodos tradicionais falham. Trabalhos recentes apresentam redes neurais artificiais capazes de realizar eficientemente tarefas intratáveis por algoritmos convencionais com o emprego de aprendizado de máquina, tornando-se assim um dos métodos mais populares. Concomitantemente, algoritmos genéticos, inspirados pelos processos biológicos de seleção natural e mutação, têm sido utilizados como método metaheurístico para encontrar soluções de problemas de otimização. Levantamos então a questão se algoritmos genéticos possuem potencial para resolver problemas no contexto da computação quântica, onde a intuição humana decresce à medida que os sistemas físicos crescem. Especificamente, nos concentramos na evolução de códigos de correção de erros quânticos dentro do formalismo de códigos stabilizer. Ao especificar uma função de fitness apropriada, mostramos que somos capazes de evoluir códigos celebrados, como o código do Shor e o perfeito de 9 e 5 qubits respectivamente, além de novos exemplos não antecipados. Adicionalmente, comparamos com o método força bruta de busca aleatória e verificamos uma crescente superioridade do algoritmo genético conforme aumenta-se o número total de qubits. Diante dos resultados, imaginamos que algoritmos genéticos possam se tornar ferramentas valiosas para desempenhar aplicações complexas em sistemas quânticos e produzir circuitos sob medida que satisfaçam restrições impostas por hardware.