[pt] GEOMETRIAS DE THURSTON E FIBRADOS DE SEIFERT
Ano de defesa: | 2003 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4294&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4294&idi=2 http://doi.org/10.17771/PUCRio.acad.4294 |
Resumo: | [pt] Iniciamos com o estudo das orbifolds, que são espaços topológicos localmente homeomorfos a quocientes de Rn por grupos finitos. Estudamos em seguida os fibrados de Seifert de dimensão três, que consistem-se de folheações por círculos que podem ser vistas como fibrados sobre orbifolds. Esse material é usado em seguida no estudo das geometrias modelo. Uma geometria modelo (ou geometria de Thurston) é um par (G;X), onde X é uma variedade conexa e simplesmente conexa e G é um grupo de difeomorfismos de X com certas propriedades que nos permite encontrar uma métrica riemanniana em X tal que G é o grupo de todas as isometrias. A classificação das geometrias modelo é muito útil na classificação topológica das variedades que admitem uma métrica localmente homogênea e foi feita por Thurston em Three-Dimensional Geometry and Topology, vol.1, Princeton University Press, 1997. Na seqüência, apresentamos uma breve descrição de cada geometria modelo bem como parte da prova do teorema de classificação das geometrias modelo. |