[en] FORECASTING EMPLOYMENT AND UNEMPLOYMENT IN US. A COMPARISON BETWEEN MODELS

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: MARCOS LOPES MUNIZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=2
http://doi.org/10.17771/PUCRio.acad.50302
Resumo: [pt] Prever emprego e desemprego é de grande importância para praticamente todos os agentes de uma economia. Emprego é uma das principais variáveis analisadas como indicador econômico, e desemprego serve para os policy makers como uma orientação às suas decisões. Neste trabalho, eu estudo quais características das duas séries podemos usar para auxiliar no tratamento dos dados e métodos empregados para auxiliar no poder preditivo das mesmas. Eu comparo modelos de machine (Random Forest e Lasso Adaptativo) e Deep (Long short Term memory) learning, procurando capturar as não linearidades e dinâmicas de ambas séries. Os resultados encontrados sugerem que o modelo AR com Random Forest aplicado nos resíduos, como uma maneira de separar parte linear e não linear, é o melhor modelo para previsão de emprego, enquanto Random Forest e AdaLasso com Random Forest aplicado nos resíduos são os melhores para o desemprego.