[en] FORECASTING EMPLOYMENT AND UNEMPLOYMENT IN US. A COMPARISON BETWEEN MODELS
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=2 http://doi.org/10.17771/PUCRio.acad.50302 |
Resumo: | [pt] Prever emprego e desemprego é de grande importância para praticamente todos os agentes de uma economia. Emprego é uma das principais variáveis analisadas como indicador econômico, e desemprego serve para os policy makers como uma orientação às suas decisões. Neste trabalho, eu estudo quais características das duas séries podemos usar para auxiliar no tratamento dos dados e métodos empregados para auxiliar no poder preditivo das mesmas. Eu comparo modelos de machine (Random Forest e Lasso Adaptativo) e Deep (Long short Term memory) learning, procurando capturar as não linearidades e dinâmicas de ambas séries. Os resultados encontrados sugerem que o modelo AR com Random Forest aplicado nos resíduos, como uma maneira de separar parte linear e não linear, é o melhor modelo para previsão de emprego, enquanto Random Forest e AdaLasso com Random Forest aplicado nos resíduos são os melhores para o desemprego. |