[pt] ENSAIOS SOBRE O RISCO DE PREVISÃO DE PREÇOS DE ENERGIA ELÉTRICA E MODELAGEM DE CARGA DEMANDADA A UMA DISTRIBUIDORA DE ELETRICIDADE
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34601&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34601&idi=2 http://doi.org/10.17771/PUCRio.acad.34601 |
Resumo: | [pt] A presente tese trata da avaliação do risco associado à incerteza presente na previsão dos preços de energia elétrica, bem como os aspectos de incerteza associados à previsão de demanda da carga de energia elétrica exigida de uma distribuidora de eletricidade. O primeiro trabalho trata do risco associado à previsão dos preços da energia elétrica, partindo do conhecido fato de que os vários modelos de previsão destes preços são sabidamente imprecisos; assim sendo, qual deve ser o risco incorrido ao se utilizar determinada técnica de modelagem, considerando-se que provavelmente estaremos fazendo uma previsão errônea. A abordagem utilizada é a modelagem dos erros de previsão com a Teoria de Valores Extremos, que se mostra bastante segura para modelagens dos quantis extremos da distribuição dos resíduos, desde 98 porcento até acima de 99,5 porcento, para diferentes frequências de amostragem dos dados. No capítulo seguinte, é feita uma avaliação da carga elétrica demandada a uma distribuidora, primeiramente considerando a abordagem utilizando modelos do tipo ARMA e ARMAX, buscando avaliar sua eficiência preditiva. Estes modelos são sabidamente apropriados para previsões no curto prazo, e mostramos através de simulações de Monte Carlo, que sua extensão para previsões de longo prazo torna inócua a busca de sofisticação através do trabalho de incorporação de variáveis exógenas. O motivo é que dado que o erro incorrido em quaisquer destas previsões mais longas com tais modelos é tão grande, ainda que sejam modelos mais ou menos sofisticados, com variáveis exógenas ou não, um modelo simples produzirá o mesmo efeito do que aquele de maior sofisticação, em termos de confiança na previsão média obtida. Finalmente, o último trabalho aborda o tema de possíveis não linearidades no processo de geração de dados da carga elétrica demandada de uma distribuidora, admitindo não ser este um processo apenas linear. Para tal são usados modelos não lineares auto-regressivos de mudança de regimes, que se mostram vantajosos por serem inerentemente resistentes a possíveis quebras estruturais na série de carga utilizada, além de serem particularmente apropriados para modelar assimetrias no processo gerador de dados. Mostramos que mesmo modelos do tipo TAR simples, com apenas dois regimes e auto excitados, isto é, não incorporando quaisquer variáveis exógenas, podem ser mais apropriados do que modelos lineares auto-regressivos, demonstrando melhor capacidade de previsão fora-da-amostra. Ao mesmo tempo tais modelos tem relativa facilidade de cálculo, não exigindo sofisticados recursos computacionais. |